top of page
Search
Writer's pictureunpadhimbio

Astrobiology : The New Prospects Among the Stars


Astrobiology seeks to understand the origin of the building blocks of life, how these biogenic compounds combine to create life, how life affects - and is affected by the environment from which it arose, and finally, whether and how life expands beyond its planet of origin.


None of these questions is by any means new - but for the first time since they were posed, these questions may now be answerable. Astrobiology seeks to provide a philosophical and programmatic underpinning whereby life's place in the universe can be explored - at levels of inter-related complexity ranging from molecular to galactic.

At first, one might not think that their field of expertise might be relevant to Astrobiology. Indeed, with Astrobiology's cosmic perspective, they could well see their interests as being somewhat distant from such an expansive endeavor. Dive into even the most superficial description of Astrobiology and you'll soon see that not only are a vast array of scientific and engineering disciplines involved, but that the intersection points between these disciplines are often novel.


At some point everyone has a stake in Astrobiology. The challenge which lies ahead is not so much the framing of questions as it is of how to channel all relevant expertise to the right task so as to answer these questions. It also requires the willingness of all participants to challenge old assumptions and conceive of novel ways to do things.


As Albert Einstein once said, "the universe is stranger than we can imagine". None the less, armed with this caveat, Astrobiologists should never stop trying to imagine how the universe works - nor shy away from attempting to understand their personal place amidst its splendor and mystery.


WHAT THE FUTURE HOLD FOR US? THE QUESTIONS YOU SHOULD BE ASKING FOR!


Extrasolar planets: finding them and evaluating their biological potential

Astronomers, climatologists, and ecologists will be called upon to devise a strategy whereby extrasolar planets capable of fostering the development of life can be located. Recent discoveries seem to show that planet formation is a common phenomenon in the universe. While only large Jupiter-class planets have been detected thus far, it is only a matter of time before smaller, Earth-class planets are expected to be found.


Can these planets be directly imaged? What do we look for when we try to ascertain where a planet supports life? Can planetary phenomena indicative of life be detected across interstellar distances? Are there aspects of a planet's atmospheric composition that are indicative of the disequilibria we expect life to maintain? Are there aspects of ice-covered ocean world such as Europa which can be detected from a distance? Are we going to look for evidence chemistries that are different than those than Earth-based life uses? Can we determine what the habitable zone is for a star? Can planets - and the conditions for life arise in multiple star systems?


Are there features a technological race leaves that can be detected across interstellar distances? Do these features outlive their creators? Are we going to be looking for Dyson spheres or other means whereby a star's output is harnessed or modified? Will we be looking for star systems with more than one habitable world, perhaps terraformed planets? Does the act of traversing interstellar space leave detectable traces?


What will it take for terrestrial life to survive and adapt to environments in space and on other planets?

Spacecraft engineers, life support engineers, human factors scientists, evolutionary biologists, ecologists, physicians, environmental toxicologists, and psychologists will be called upon to understand what is required to support humans and other Terran life forms in extraterrestrial environments - in space and upon planetary surfaces.

What sort of countermeasures will we need to develop to deal with the debilitating effects of microgravity and space radiation? Can humans and other life forms readapt to life on Earth after adapting to live in microgravity or in the lower gravitational fields on the Moon and Mars? Can life forms be modified to better function in extraterrestrial environments? Should they be modified? Should we modify only adults or pre-adapt children? Can children born in extraterrestrial colonies adapt to life on Earth? Can humans even reproduce in space? If we decide to terraform other worlds, what forms of life will we seed these worlds with? Can we modify exiting terrestrial life forms? Do we need to create new ones?


Source :


Kaufman, M. (n.d.). ASTROBIOLOGY at NASA. Retrieved from A HISTORY OF ASTROBIOLOGY: Astrobiology.nasa.gov

2 views0 comments

Recent Posts

See All

Transgenic corn

Transgenic crops expressing resistance to the herbicide glyphosate (GR) have been commercialized and planted widely across the U.S. for...

Comments


bottom of page